Simulasi Komputer Pengaruh Efek Proksimitas pada Medan Kritis Superkonduktor

(masuk/received 27 Juli 2016, diterima/accepted 9 Februari 2017)

Computational Simulation of Proximity Effect on Superconductor Critical Field

Fuad Anwar¹, Pekik Nurwantoro², Arief Hermanto²

¹Program Studi Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret (UNS), Surakarta, Indonesia
 ²Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia
 fuada70@yahoo.com

Abstrak – Telah dibuat kajian pengaruh syarat batas efek proksimitas pada penyelesaian komputasi persamaan Ginzburg-Landau Gayut Waktu. Bahan kajian adalah superkonduktor berbentuk kotak yang berbatasan dengan bahan lain pada keempat sisinya dan dipengaruhi medan magnet luar. Metode pembuatan simulasi didasarkan pada persamaan Ginzburg-Landau gayut waktu serta persamaan syarat batas parameter benahan dan syarat batas medan magnet. Persamaan-persamaan tersebut lalu didiskretkan dengan menggunakan metode ψ U. Hasil kajian menunjukkan bahwa nilai medan kritis permukaan membesar, medan kritis rendah mengecil pada ukuran bahan $N_x \times N_y = 12 \times 12$ dan membesar pada ukuran bahan $N_x \times N_y = 32 \times 32$ jika nilai panjang ekstrapolasi membesar.

Kata kunci: efek proksimitas, persamaan TDGL, superkonduktor

Abstract – We have made a study about influence of the boundary conditions with the proximity effect on the computational solutions of the Time Dependent Ginzburg-Landau (TDGL) equations. The object of our study was a rectangular superconductor bounded by other material and applied to an external magnetic field. The TDGL equations and their boundary conditions was solved using ψU method. The result of this study shows that the surface critical field increases, the lower critical field decreases at the size of $N_x \times N_y = 12 \times 12$ and increases at the size of $N_x \times N_y = 32 \times 32$, when the extrapolation length decreases.

Key words: proximity effect, TDGL equations, superconductor

I. PENDAHULUAN

Kajian sifat-sifat superkonduktor dengan menggunakan persamaan Ginzburg-Landau gayut waktu yang diselesaikan dengan menggunakan metode ψU telah dilakukan banyak orang [1-15]. Metode ψU dipilih karena hasil perhitungan dianggap tetap konvergen ketika medan magnet dinaikkan sampai mendekati nilai medan kritis permukaan [1,4,7].

Pada keadaan nyata dan ketika diterapkan dalam teknologi, superkonduktor hampir selalu terletak berbatasan dengan bahan lain yang bukan ruang hampa. Karena itulah, beberapa peneliti [5-8] telah memasukkan syarat batas parameter benahan dengan efek proksimitas dalam penyelesaian komputasi persamaan Ginzburg-Landau Gayut Waktu dengan metode ψU dan hasilnya dipakai untuk mengkaji sifat-sifat superkonduktor.

Selain itu, pada kajian sebelumnya [15], penulis telah mengkaji cara menentukan nilai medan kritis pada penyelesaian Persamaan Ginzburg-Landau Gayut Waktu dengan metode ψU . Sebagai lanjutan kajian tersebut, dalam makalah ini akan dibahas bagaimana pengaruh efek proksimitas pada nilai medan kritis superkonduktor.

II. LANDASAN TEORI

Persamaan Ginzburg-Landau gayut waktu dapat dituliskan sebagai [1-3,16]

$$\frac{\partial \psi(\mathbf{r},t)}{\partial t} = \left(\nabla - i\mathbf{A}(\mathbf{r},t)\right)^2 \psi(\mathbf{r},t) + \psi(\mathbf{r},t) - \left|\psi(\mathbf{r},t)\right|^2 \psi(\mathbf{r},t), \qquad (1)$$

$$\sigma \frac{\partial \mathbf{A}(\mathbf{r},t)}{\partial t} = \frac{1}{2i} \Big(\overline{\psi}(\mathbf{r},t) \nabla \psi(\mathbf{r},t) - \psi(\mathbf{r},t) \nabla \overline{\psi}(\mathbf{r},t) - 2i |\psi(\mathbf{r},t)|^2 \mathbf{A}(\mathbf{r},t) \Big), \quad (2)$$
$$-\kappa^2(T) \nabla \times (\nabla \times \mathbf{A}(\mathbf{r},t) - \mathbf{H}_{ext}(\mathbf{r},t))$$

Jika superkonduktor terletak berbatasan dengan medium lain (misalnya logam), maka syarat batas parameter benahannya adalah

$$\hat{\mathbf{n}} \cdot \left[\nabla - i\mathbf{A} \right] \psi = \frac{\psi}{b} \,, \tag{3}$$

dan syarat batas medan magnetnya adalah

$$\mathbf{H}_{\mathbf{ext}} = \nabla \times \mathbf{A} \,. \tag{4}$$

Dalam persamaan-persamaan di atas, ψ adalah parameter benahan dalam satuan $\psi_0 = (|\alpha(T)|/\beta)^{1/2}$, **A** adalah potensial vektor magnet dalam satuan $A_0 = \mu_0 H_{c2}(T) \xi(T)$, **H**_{ext} adalah intensitas medan magnet luar dalam satuan $H_{c2}(T)$, σ adalah konduktivitas listrik dalam satuan $\sigma_0 = 1/(\mu_0 \kappa(T)^2 D)$, **r** adalah panjang dalam satuan $\xi(T)$, *t* adalah waktu dalam satuan $\tau(T) = \xi(T)^2/D$, $\alpha(T)$ dan β adalah koefisien ekspansi rapat energi bebas Ginzburg-Landau, $H_{c2}(T)$ adalah medan kritis tinggi superkonduktor, $\xi(T)$ adalah adalah panjang koherensi, $\kappa(T)$ adalah parameter Ginzburg-Landau, D adalah konstanta difusi fenomenologi serta *b* adalah panjang ekstrapolasi dalam satuan $\xi(T)$ [1-3,16].

v

III. METODE PENELITIAN

Pada penelitian ini, ditinjau suatu bahan superkonduktor berbentuk kotak dengan panjang N_x dan lebar N_y pada arah sumbu x dan y serta dikenai medan magnet luar yang seragam, gayut waktu dan searah sumbu z positif.

Di dalam metode ψU , superkonduktor berbentuk kotak berukuran $N_x \times N_y$ dianggap tersusun dari sekumpulan sel berukuran $\Delta_x \times \Delta_y$. Di tiap sel tersebut, terdapat tiga besaran fundamental, yaitu ψ , U^x dan U^y . Penjelasan ketiga besaran tersebut pada keadaan superkonduktor yang dikaji adalah [1-3]

- $\psi_{i,j}$ adalah parameter benahan pada posisi (x_i, y_j) dengan $i = 1, 2, ..., N_x + 1$ dan $j = 1, 2, ..., N_y + 1$.
- *U^x* disebut peubah pautan medan magnet pada arah sumbu *x* dan didefinisikan sebagai

$$U_{i,j}^{x} = U^{x}(x_{i}, y_{j}) = \exp\left(-i\int_{x_{i}}^{x_{i+1}} A_{x}(\xi, y_{j})d\xi\right), \quad (5)$$

dengan $i = 1, 2, ..., N_x$ dan $j = 1, 2, ..., N_y+1$.

• *U^y* disebut peubah pautan medan magnet pada arah sumbu *y* dan didefinisikan sebagai

$$U_{i,j}^{y} = U^{y}(x_{i}, y_{j}) = \exp\left(-i\int_{y_{j}}^{y_{j+1}} A_{y}(x_{i}, \eta) d\eta\right), \quad (6)$$

dengan $i = 1, 2, ..., N_x + 1 \text{ dan } j = 1, 2, ..., N_y$.

Jika persamaan Ginzburg-Landau gayut waktu diterapkan pada keadaan superkonduktor di atas dan didiskretkan dengan metode ψU serta diambil nilai $\sigma = 1$, maka didapat sekumpulan persamaan berikut [1-3] $\psi_{i,i}(t + \Delta t) = \psi_{i,i}(t)$

$$+ \left(\frac{U_{i,j}^{x}(t)\psi_{i+1,j}(t) - 2\psi_{i,j}(t) + \overline{U}_{i-1,j}^{x}(t)\psi_{i-1,j}(t)}{\Delta x^{2}} \right) \Delta t$$

$$+ \left(\frac{U_{i,j}^{y}(t)\psi_{i,j+1}(t) - 2\psi_{i,j}(t) + \overline{U}_{i,j-1}^{y}(t)\psi_{i,j-1}(t)}{\Delta y^{2}} \right) \Delta t$$

$$+ \left(1 - \left| \psi_{i,j}(t) \right|^{2} \right) \psi_{i,j}(t) \Delta t$$

$$U_{i,j}^{x}(t + \Delta t) = U_{i,j}^{x}(t) - iU_{i,j}^{x}(t) \operatorname{Im} \left(U_{i,j}^{x}(t) \overline{\psi}_{i,j}(t) \psi_{i+1,j}(t) \right) \Delta t$$

$$- \frac{\kappa^{2}}{\Delta y^{2}} U_{i,j}^{x}(t) \left(L_{i,j}(t) \overline{L}_{i,j-1}(t) - 1 \right) \Delta t$$
(8)

$$U_{i,j}^{y}(t + \Delta t) = U_{i,j}^{y}(t) - iU_{i,j}^{y}(t) \operatorname{Im} \left(U_{i,j}^{y}(t) \overline{\psi}_{i,j}(t) \psi_{i,j+1}(t) \right) \Delta t - \frac{\kappa^{2}}{2} U_{i,j}^{y}(t) \left(\overline{L}_{i,j}(t) L_{i-1,j}(t) - 1 \right) \Delta t$$
(9)

 Λx

dengan

$$L_{i,j} = U_{i+1,j}^{y} \overline{U}_{i,j}^{y} \overline{U}_{i,j+1}^{x} U_{i,j}^{x} \approx \exp\left(-i\Delta x \Delta y B_{z;i,j}\right).$$
(10)

Dengan cara yang sama, didapat pula syarat batas parameter benahan dan syarat batas medan magnet pada garis i = 1

$$\psi_{1,j}(t) = \frac{U_{1,j}^{x}(t)\psi_{2,j}(t)}{1 + \frac{\Delta x}{h}}$$
(11)

dan

$$U_{l,j}^{y} \approx U_{2,j}^{y} \overline{U}_{l,j+1}^{x} U_{l,j}^{x} \overline{\exp(-i\Delta x \Delta y H_{ext})}, \quad (12)$$

pada garis $i = N_x + 1$

 $\psi_{N_{x}+1,j}(t) = \frac{\overline{U}_{N_{x},j}^{x}(t)\psi_{N_{x},j}(t)}{1 + \frac{\Delta x}{t}}$ (13)

dan

$$U_{N_x+1,j}^{y} \approx U_{N_x,j}^{y} U_{N_x,j+1}^{x} U_{N_x,j}^{x} \exp\left(-i\Delta x \Delta y H_{ext}\right), \quad (14)$$

pada garis $j = 1$

$$_{i,1}(t) = \frac{U_{i,1}^{y}(t)\psi_{i,2}(t)}{1 + \frac{\Delta y}{b}},$$
(15)

dan

$$U_{i,1}^{x} \approx \overline{U}_{i+1,1}^{y} U_{i,1}^{y} U_{i,2}^{x} \exp\left(-i\Delta x \Delta y H_{ext}\right), \qquad (16)$$

pada garis $j = N_y + 1$

$$\psi_{i,N_y+1}(t) = \frac{U_{i,N_y}^{y}(t)\psi_{i,N_y}(t)}{1 + \frac{\Delta y}{b}}$$
(17)

dan

$$U_{i,N_y+1}^x \approx U_{i+1,N_y}^y \overline{U}_{i,N_y}^y U_{i,N_y}^x \overline{\exp(-i\Delta x \Delta y H_{ext})}.$$
(18)

Dari hasil diskretisasi persamaan Ginzburg-Landau gayut waktu dan syarat batasnya di atas, dapat dibuat program simulasi penyelesaian persamaan Ginzburg-Landau gayut waktu. Secara umum, proses pembuatan program simulasi tersebut dimulai dengan menganggap superkonduktor yang mempunyai nilai κ tertentu berada pada keadaan suhu yang lebih kecil daripada suhu kritisnya dan dikenai medan luar H_{ext} =0, sehingga seluruh bagian superkonduktor mempunyai nilai $\psi_{i,j}$ = 1 serta $U_{i,j}^x$ =1 dan $U_{i,j}^y$ =1.

Selanjutnya nilai medan luar H_{ext} dinaikkan dengan mengikuti persamaan

$$H_{ext}(t + \Delta t) = H_{ext}(t) + \Delta H_{ext}, \qquad (19)$$

dengan ΔH_{ext} dimaksudkan sebagai kenaikan nilai H_{ext} untuk setiap nilai waktu Δt yang ditentukan. Kenaikan nilai H_{ext} menyebabkan adanya perubahan nilai $\psi_{i,j}$ serta $U_{i,j}^{x}$ dan $U_{i,j}^{y}$ yang dihitung dengan menggunakan persamaan (7) - (18).

Nilai medan magnet luar H_{ext} dinaikkan berulang-ulang sehingga membentuk suatu proses iterasi dalam program komputer. Untuk setiap nilai H_{ext} perubahan nilai $\psi_{i,j}$ serta $U^{x}_{i,j}$ dan $U^{y}_{i,j}$ akan dihitung dan dicatat. Demikian seterusnya program simulasi tersebut berjalan sampai H_{ext} mencapai nilai tertentu yang diinginkan.

Dari program komputer ini, dapat dihitung pula nilai magnetisasi M sebagai fungsi medan magnet luar dengan menggunakan persamaan

$$\langle M \rangle = \langle B \rangle - H_{ext},$$
 (20)

dengan

$$\langle B \rangle = \frac{\sum_{i=1,j=1}^{N_x,N_y} B_{z;i,j}(t)}{N_x \times N_y} \,. \tag{21}$$

IV. HASIL DAN PEMBAHASAN

Untuk mendapatkan hasil keluaran, maka program simulasi ini diberi masukan $\Delta_x=0.5$, $\Delta_y=0.5$, $\Delta_r=0.010$, $\Delta H_{ext}=0.000001$ dan $\kappa=2.0$. Selain itu, nilai masukan lain program simulasi ini divariasi seperti terlihat di Tabel 1.

Tabel 1. Variasi masukan Penelitian Proksimitas.		
Nama	Nilai	Nilai <i>b</i>
Masukan	$N_x \times N_y$	
А	6×6	tak ada efek proksimitas
A1	6×6	1
A2	6×6	3
A3	6×6	10
В	12×12	tak ada efek proksimitas
B1	12×12	1
B2	12×12	3
B3	12×12	10
С	32×32	tak ada efek proksimitas
C1	32×32	1
C2	32×32	3
C3	32×32	10

Pada penelitian ini, nilai masukan $N_x \times N_y$ dinyatakan dalam satuan $\Delta_x \times \Delta_y$.

Dari masukan yang diberikan tersebut, jika program simulasi ini dijalankan, maka akan didapat grafik magnetisasi rata-rata sebagai fungsi medan magnet luar atau $\langle M \rangle$ - H_{ext} seperti terlihat di Gambar 1-3. Pustaka sebelumnya [15] menyebutkan bahwa nilai medan kritis rendah (H_{c1}) dan medan kritis permukaan (H_{c3}) dapat ditentukan berdasarkan titik maksimum lokal pertama dan titik nol grafik $\langle M \rangle$ - H_{ext} . Dengan melihat Gambar 1-3, maka nilai H_{c1} dan H_{c3} dapat ditentukan sebagaimana terlihat di Gambar 4 dan 5.

Gambar 1. Grafik $\langle M \rangle$ - H_{ext} pada --- : masukan A ($N_x \times N_y = 6 \times 6$ dan tak ada efek proksimitas) ... : masukan A1 ($N_x \times N_y = 6 \times 6$ dan b=1) ... : masukan A2 ($N_x \times N_y = 6 \times 6$ dan b=3) ... : masukan A3 ($N_x \times N_y = 6 \times 6$ dan b=10)

Gambar 2. Grafik $<M>-H_{ext}$ pada — : masukan B $(N_x \times N_y = 12 \times 12$ dan tak ada efek proksimitas) ... : masukan B1 $(N_x \times N_y = 12 \times 12$ dan b=1) ... : masukan B2 $(N_x \times N_y = 12 \times 12$ dan b=3)

...: masukan B3 $(N_x \times N_y = 12 \times 12 \text{ dan } b = 10)$

Gambar 4. Perbandingan nilai H_{cl} untuk berbagai keadaan masukan penelitian tanpa efek proksimitas (warna hitam) dan penelitian ada efek proksimitas (warna biru).

Gambar 5. Perbandingan nilai H_{c3} untuk berbagai keadaan masukan penelitian tanpa efek proksimitas (warna hitam) dan penelitian ada efek proksimitas (warna biru).

Dari kajian terhadap nilai H_{c1} dan H_{c3} di Gambar 4 dan 5, didapat fenomena-fenomena sebagai berikut:

- 1. Pada masukan A1, A2 dan A3 $(N_x \times N_y = 6 \times 6)$, sebagaimana pada Gambar 4, nilai H_{cl} tidak tampak, karena grafik $<M>-H_{ext}$ pada gambar 1 tidak mempunyai titik maksimum lokal pertama.
- 2. Pada masukan B1, B2 dan B3 ($N_x \times N_y = 12 \times 12$), sebagaimana pada Gambar 4, jika nilai *b* membesar, maka nilai H_{cl} mengecil dan mendekati nilai H_{cl} tanpa efek proksimitas, sedangkan pada masukan C1, C2 dan C3 ($N_x \times N_y = 32 \times 32$), sebagaimana pada gambar

5, jika nilai *b* membesar, maka nilai H_{c1} membesar dan mendekati nilai H_{c1} tanpa efek proksimitas.

3. Pada semua masukan penelitian ini, sebagaimana pada Gambar 5, jika nilai *b* membesar, maka nilai H_{c3} membesar dan mendekati nilai H_{c3} tanpa efek proksimitas.

V. KESIMPULAN

Telah dilakukan pengkajian pengaruh efek proksimitas pada nilai medan kritis superkonduktor tipe II melalui penyelesaian komputasi Persamaan Ginzburg-Landau Gayut Waktu dengan metode ψU . Hasil pengkajian menunjukkan bahwa (1) pada ukuran $N_x \times N_y = 6 \times 6$ nilai H_{c1} tidak muncul, pada ukuran $N_x \times N_y = 12 \times 12$ nilai H_{c1} mengecil jika nilai *b* membesar, dan pada ukuran $N_x \times N_y = 32 \times 32$ nilai H_{c1} membesar jika nilai *b* membesar (2) pada ukuran $N_x \times N_y = 6 \times 6$, $N_x \times N_y = 12 \times 12$, dan $N_x \times N_y = 32 \times 32$ nilai H_{c1} membesar jika nilai *b* membesar.

UCAPAN TERIMA KASIH

Penulis mengucapkan banyak terima kasih kepada Direktorat Jenderal Pendidikan Tinggi (Ditjen Dikti)-Kementerian Pendidikan dan Kebudayaan (Kemdikbud)-Indonesia untuk dukungan dana penelitian ini melalui beasiswa BPPS.

PUSTAKA

- C. Bolech, G. C. Buscaglia, and A. Lopez, Numerical Simulation of Vortex Arrays in Thin Superconducting Films, *Phys. Rev. B*, vol. 52, no. 22, 1995, pp. R15719-R15722.
- [2] W. D. Gropp, H. G. Kaper, G. K. Leaf, D. M. Levine, M. Palumbo and V. M. Vinokur, Numerical Simulation of Vortex Dynamics in Type-II Superconductors, *Journal of Computational Physics*, no. 123, 1996, pp. 254-266.
- [3] T. Winiecki and C. S. Adams, A Fast Semi-Implicit Finite Difference Method for The TDGL Equations, *Journal of Computational Physics*, no. 179, 2002, pp. 127-139.
- [4] J. J. Barba, L. R. E. Cabral and J. A. Aguiar, Vortex Arrays in Superconducting Cylinders, *Physica C*, no. 460-462, 2007, pp. 1272-1273.

- [5] J. J. Barba, C. C. de Souza Silva, L. R. E. Cabral and J. A. Aguiar, Flux Trapping and Paramagnetic Effects in Superconducting Thin Films: The Role of de Gennes Boundary Conditions, *Physica C*, no. 468, 2008, pp. 718-721.
- [6] F. Anwar, M. Yunianto, R.A.S. Yosi, P. Nurwantoro, B.S.U. Agung, A. Hermanto, Simulasi Komputer Pengaruh Efek Proksimitas Pada Vorteks Superkonduktor, *Media Fisika*, vol. 7, no. 2, 2008, pp. 1-9.
- [7] J. Barba-Ortega and J. A. Aguiar, De Gennes Parameter Limit for The Occurrence of a Single Vortex in a Square Mesoscopic Superconductor, *Physica C*, no. 469, 2009, pp. 754-755.
- [8] F. Anwar, M. Yunianto, R.A.S. Yosi, P. Nurwantoro, B.S.U. Agung, A. Hermanto, Simulasi Komputer Pengaruh Efek Proksimitas Pada Vorteks Superkonduktor Berlubang, *Media Fisika*, vol. 9, no. 2, 2010, pp. 7-16.
- [9] J. Barba-Ortega, A. Becerra, and J.A. Aguiar, Two Dimensional Vortex Structures in a Superconductor Slab at Low Temperatures, *Physica C*, no. 470, 2010,pp. 225-230.
- [10] M.C.V. Pascolati, E. Sardella, and P.N. Lisboa-Filho, Vortex Dynamics in Mesoscopic Superconducting Square of Variable Surface, *Physica C*, no. 470, 2010, pp. 206-211.
- [11] J. Barba-Ortega, E. Sardella, J.A. Aguiar, and E.H. Brandt, Vortex State in a Mesoscopic Flat Disk with Rough Surface, *Physica C*, no. 479, 2012, pp. 49-52.
- [12] J. Barba-Ortega, E. Sardella, and J.A. Aguiar, Triangular Arrangement of Defects in a Mesoscopic Superconductor, *Physica C*, no. 485, 2013, pp. 107-114.
- [13] A. Presotto, E. Sardella and R. Zadorosny, Study of The Threshold Line between Macroscopic and Bulk Behaviors for Homogeneous Type II Superconductors, *Physica C*, no. 492, 2013, pp. 75-79.
- [14] F. Anwar, P. Nurwantoro, and A. Hermanto, Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation, *Journal of Natural Sciences Research*, vol. 3, no. 15, 2013, pp. 99-106.
- [15] F. Anwar, P. Nurwantoro, A. Hermanto, Kajian Medan Kritis pada Penyelesaian Komputasi Persamaan Ginzburg-Landau Gayut Waktu, Prosiding Pertemuan Ilmiah XXVIII Himpunan Fisika Indonesia Jateng & DIY, Yogyakarta, April 2014, pp 145-148.
- [16] M. Tinkham, Introduction to Superconductivity, McGraw-Hill Inc, Singapore, 1996.